Madent AI-Elm University College
 College Of Engineering
 Civil Engineering Department

Reinforced concrete design II Subject: Slab Thickness and DDM

Monthly Exam
Time: 1 hr
Stage: $4^{\text {th }}$

Typical Solutions

Q. 1 (50\%) Find the minimum thickness of a slab for an interior panel due to deflection control for the following: Use $\mathbf{f y}=\mathbf{4 2 0} \mathbf{~ M P a}$. (60000 psi).
a- Flat slab with drop panels $(6.2 \times 5.5) \mathrm{m}$ clear span.
b- Flat plate $(3.8 \times 3.2) \mathrm{m}$ clear span.
c- Slab with beams $(7.8 \times 7.8) \mathrm{m}$ clear span with $\boldsymbol{\alpha}_{\mathrm{m}}=3.4$
d- Slab without drop panels $(5.9 \times 5.3) \mathrm{m}$ clear span with $\boldsymbol{\alpha}_{\mathrm{m}}=\mathbf{0} .11$
e- Slab with beams $(6.1 \times 5.2) \mathrm{m}$ clear span with $\boldsymbol{\alpha}_{\mathrm{m}}=\mathbf{1 . 4}$

Solution:

a. Flat slab with drop panels $(6.2 \times 5.5) \mathrm{m}$ clear span

From ACI Table 8.3.1. $\mathrm{h}=\frac{\ell n}{36}=\frac{6200}{36}=172 \mathrm{~mm}>100 \mathrm{~mm}$ O.k
Use $\mathrm{h}=180 \mathrm{~mm}$
b. Flat plate $(3.8 \times 3.2) \mathrm{m}$ clear span.

From ACI Table 8.3.1.1 $\mathrm{h}=\frac{\ell n}{33}=\frac{3800}{33}=115.15 \mathrm{~mm}<125 \mathrm{~mm}$
Not O.K use $\mathrm{h}=125 \mathrm{~mm}$
c. Slab with beams $(7.8 \times 7.8) \mathrm{m}$ clear span with $\boldsymbol{\alpha}_{\mathrm{m}}=3.4$
$\alpha_{\mathrm{m}}=3.4>2$
$\mathrm{h}=\frac{\ln \left(0.8+\frac{f y}{1400}\right)}{36+9 \beta} \beta=\frac{\ell n}{S n}=\frac{7.8}{7.8}=1$
$\mathrm{h}=\frac{7800 *\left(0.8+\frac{420}{1400}\right)}{36+9 * 1}=190.667 \mathrm{~mm}>90 \mathrm{~mm}$ O.K
Use $\mathrm{h}=200 \mathrm{~mm}$
d. Slab without drop panels (5.9×5.3) m clear span with $\boldsymbol{\alpha}_{\mathrm{m}}=\mathbf{0 . 1 1}$
$\alpha_{\mathrm{m}}=0.11<0.2$ Go to Table 8.3.1.1
$\mathrm{h}=\frac{\ell n}{33}=\frac{5900}{33}=178.78 \mathrm{~mm}>125 \mathrm{~mm} \mathrm{O} . \mathrm{K}$
Use $\mathrm{h}=180 \mathrm{~mm}$
e. Slab with beams $(6.1 \times 5.2) \mathrm{m}$ clear span with $\boldsymbol{\alpha}_{\mathrm{m}}=1.4$
$0.2<\alpha_{\mathrm{m}}=1.4<2.0$
$\mathrm{h}=\frac{\ell n\left(0.8+\frac{f y}{1400}\right)}{36+5 \beta\left(\alpha_{f m}-0.2\right)} \quad \beta=\frac{\ell n}{S n}=\frac{6.1}{5.2}=1.17$
$\mathrm{h}=\frac{6100 *\left(0.8+\frac{420}{1400}\right)}{36+5 * 1.17 *(1.4-0.2)}=155.97 \mathrm{~mm}>125 \mathrm{~mm} \mathrm{O} . \mathrm{k}$
Use $\mathrm{h}=160 \mathrm{~mm}$

For exterior panel

Interior Negative moment $=72.55 \mathrm{kN} . \mathrm{m}$
$\alpha_{f}=0$
Negative moment at $\mathrm{CS}=0.75 \times 72.55=54.413 \mathrm{kN} . \mathrm{m}$
Negative moment at MS $=72.55-54.413=18.14 \mathrm{kN} . \mathrm{m}$
Positive moment $=53.89 \mathrm{kN} . \mathrm{m}$
Positive moment at CS $=0.6 \times 53.89=32.33 \mathrm{kN} . \mathrm{m}$
Positive moment at MS $=53.89-32.33=21.56 \mathrm{kN} . \mathrm{m}$
Exterior negative moment $=26.95 \mathrm{kN} . \mathrm{m}$
$\alpha_{\mathrm{f}}=0 \quad \& \quad \beta_{\mathrm{t}}=0$
Negative moment at CS $=1 \times 26.95=26.95 \mathrm{kN} . \mathrm{m}$
Negative moment at MS $=26.95-26.95=0$

